

Modeling Ampt String Optimizers in PVsyst

Table of Contents

1	Int	roduc	tion	3
2	Gr	id sys	tem definition screen	3
3	Sy	stem	input parameters	4
	3.1	Sele	ect the PV module sections settings	5
	3.2	Sele	ect the inverter section settings	5
	3.3	Arra	ay Design for String Optimizers section settings	6
	3.3	8.1	Inverter input tab	6
	3.3	8.2	String converter inputs tab	6
4	Mo	odule	layout screens	7
	4.1	Ass	igning modules to optimizer inputs	7
5	Int	erpre	ting PVsyst reports with Ampt	8
	5.1	Sim	ulation parameters differences	8
	5.2	Los	s Diagram differences	9
	5.2	2.1	Inverter Loss over nominal inv. voltage	9
	5.2	2.2	Optimizer overloaded loss	0
A	ppend	ix	1	1
	PVsy	st's i	nverter max operating voltage behavior	1

1 Introduction

This document applies to PVsyst version 6.43 and greater and assumes that the reader is already familiar with Ampt's design guidelines and creating PVsyst simulations. Therefore, only the differences when using Ampt are addressed.

2 Grid system definition screen

Open the project, select the site, and set the orientation as normal.

The Project includes mainly the geograp	phic SITE definition, and the associated MET	TEO hourly file	
Project's name Ampt I Mwach	Project	Date 7/30/2015 💌	
🕒 New project 🕞 L	oad project	Parameter	
🕅 Delete project 🔗 💏 Re	order variants	🔆 Site and Meteo 🗮 🖾 Albedo	o - settings
System Variant (calculation	version)		
Variant n* VC0 : Ampt 1 MWa	c - Variant VC0	- <u>D</u> N	lew varia
		7 Cr	reate from
Input parameters	Optional	Simulation and re	esults
Mandatory	Horizon	🗐 Simulati	on
Orientation			
Orientation	Near Shadings	s W Results	
Orientation System	 Near Shadings Module layout 	Results	
Orientation System Otherailed losses Net metaring	Near Shadings Nodule layout O Economic eva	s Results	ariant
Orientation Orientation System Orientation Orientation Orientation System Orientation System Orientation	Near Shadings Nodule layout O Economic eva	Results	ariant ariant

- 1. System input parameters are different with Ampt. See details in section 3.
- 2. The order that modules are assigned to strings in the *Module layout* section impacts the accuracy of the simulation. See details in section 4.

3 System input parameters

Select the system sizing and modules as normal.

Gr	id system definition, Variant	"Ampt 1 MWac - Variar	nt VC0" 🗕 🗖 🧾
Global System configuration I Number of kinds of sub- ? Part Simplified	arrays Rodule: Schema	m summary 4180 8021 m² ; 1	Nominal PV Power 1296 kWp Maximum PV Power 1176 kWdr Nominal AC Power 1000 kWar
PV Array Sub-array name and Orienta Name PV Array Orient. Tracking tilted or h	ation oriz. N-S axis	resizing Help "No Sizing Enter p ? or a	lanned power C 1295.8 kWp, available area C 8021 m²
Select the PV module Available Now MFG ✓ Sizing voltages: Vmpp (65°) ✓	t modules Power C Tec 0 Wp 31V Sipoly Typical 310W C) 29.6 V AMPT V1000-12 49.4 V AMPT Dual String Onlin	nnology /pp-SiModi Since 2013 11400	MFG Data MFG Data Since 2015 MFG Data
2 Select the inverter Available Now So Inv MFG ID Nb. of inverters 1	nt inverters by: C Power C Vol 00 kW 875 - 1000 VTL 50/60Hz 1 C Operating Voltage: 879 Input maximum voltage:	age (max) MWac Ampt Mode Inv 5-1000 V Global Inverter's 1000 V	✓ 50 Hz ✓ 60 Hz Since 2013 ▲ ≥ power 1000 kWac
3 Array Design for String opti String converter inputs Nb. Optimizers in series 1 => 1 string = 44 modules. PNor i.e. part of the inverter of Nb. of Strings in parall. 95 Pnom ratio 1.30 Ove Nb. modules 4180 Are	imizers Inverter input ? ↓ ▼ 1 to 1 m = 13640 Wp spacity : 1 % ↓ Nominal 56 erload loss 0.5 % a 8021 m²	ges at Pnom Jut Voltage STC) 946 - 946 V bs 995 V ce 1000 W/m² sizing Max. op at 10 Array n	MPT design guidelines for allowable string length and Max. voltage C Max. in data • STC erating power 1156 kW 00 W/m² and 50°C) om. Power (STC) 1296 kWp
📳 System summary		X Cancel	🗸 ок

3.1 Select the PV module sections settings

	Select the PV mo	dule									
	Available Now	•	Sort m	iodules	Power	C Technology					Select Ampt model number
Check	 MFG	•	310 V	/p 31V	Si-poly	Typical 310Wp p-Si Mod	Since 2013	MFG Data	•	🖹 Open	modermaniber
Use Optimizer	Sizing voltages : 1	Vmpp	(65°C) 29.	29.6 V	V AMPT	V1000-12	11400 \	00 \ Since 2015	•	Dpen	
	🔽 Use Optimizer	Voc (-3°C)	49.4 V	AMPT D	ual String Optimizer					

- 1. Select the PV modules as normal.
- 2. Check the Use Optimizers checkbox in the Select the PV Module section.
 - a. This changes the *Design the array* section on the bottom of the screen to *Array Design for String optimizers*. These settings are addressed in section 3.3.
- 3. Select the appropriate model of Ampt optimizer from the drop down list.

3.2 Select the inverter section settings

Available Now	💌 S	ort inverti	ers by: C Power	C	Voltage (max)					I 60 Hz
Inv MFG	• 1	000 kW	875 · 1000 VTL	50/60Hz	1MWac Ampt	Mode Inv	Sinc	e 2013	•	🖹 Open
Nb. of inverters	1	1	Operating Voltage Input maximum vo	: Iltage:	875-1000 ∨ 1000 ∨	Global Inverte	's power	1000	kWac	

- 1. Select your inverter as normal.
 - a. Inverters with Ampt Mode[®] are preferred.
- 2. For the simulation to run properly, see the image below to verify that the inverter maximum operating voltage is greater than or equal to the optimizer's (converter's) maximum absolute voltage (*VCnvMax abs*).
 - a. See the Appendix for more details.

Select the inverter			50 Hz	Inverter maximum
Available Now Sort inverters by: C Pow	ver C Voltage (max)		₩ 50 Hz	operating voltage
Inv MFG 🚽 1000 kW 875 - 1000 VTL	50/60Hz 1MWac Ampt Mode Inv	Since 2013	- 🕒 Open	
Nb. of inverters 1 - Operating Volta Input maximum	age: 875-1000 V Globa i voltage: 1000 V	I Inverter's power 1000 kW	/ac	must be greater than or equal to
Array Design for String optimizers		1	1	
String converter inputs Inverter input	Converters Out Voltage			
	VCnyOper (STC) 946 - 946 V			 Optimizer's maximum
Nb. Optimizers in series 1	VCnvMax abs 995 V	See AMPT design guideline string length and Max	es for allowable . voltage	absolute voltage
=> 1 string = 44 modules, PNom = 13640 Wp			C oto	
	Plane Irradiance 1000 W/m²	Max. In data	115C M	
Nb.of Strings in parall. 95 🛨 🔽 Nominal 56	Show sizing	at 1000 W/m² and 50°C)	1130 KW	
Phominatio 1.30 Overload loss 0.5 %				
Nb. modules 4180 Area 8021 m ²		Array nom. Power (STC)	1296 kWp	

3.3 Array Design for String Optimizers section settings

3.3.1 *Inverter input* tab

Note: Type in the field or use the arrow buttons for the next settings. Do not use the checkboxes.

- 1. Make sure the Nb. Optimizers in series field is set to 1.
- 2. Enter the number of parallel strings for your system design.

3.3.2 String converter inputs tab

- 1. Enter the number of modules in series for Inputs A and B of the String Optimizer in the *Nb. Mod. in series, input A/B* fields.
 - a. The maximum number of modules shown to the right of these fields may not be allowed at a given minimum site temperature and maximum system voltage.
- 2. Leave *Nb. Modules in parallel* at 1 for 60- and 72-cell modules. If you are using different modules, please contact Ampt.

4 Module layout screens

4.1 Assigning modules to optimizer inputs

For traditional designs without Ampt, it is important for each module to be assigned to the appropriate string in PVsyst. Similarly, for PV systems with Ampt, it is important for modules to be assigned to the appropriate input of each optimizer.

With Ampt, each string has one optimizer and each optimizer has two inputs. The first modules assigned (either manually or automatically), go to Input A of the optimizer in the first string until the number of modules assigned equals the *Nb. Mod. in series, input A/B* setting in section 3.3.2. PVsyst then assigns the next modules to Input B of that optimizer. PVsyst populates the next string the same way and so on.

The example below shows module assignments for an optimizer that has 22 modules on each input.

5 Interpreting PVsyst reports with Ampt

Differences in PVsyst reports with Ampt are noted below

5.1 Simulation parameters differences

Project : Geographical Site Situation Time defined as Meteo data: Simulation variant : Simulation parameters Tracking plane, tilted J Rotation Limitations Backtracking strategy Inactive band Models used	Grid-Connecte Ampt 1 MV Bakersfield Mead Bakersfield Mead Ampt 1 MV Sim Axis M	d Systen Vac Projec dows Field Latitude Legal Time Albedo dows Field Vac - Varia ulation date Axis Tilt inimum Phi	n: Simulatio t 35.4°N Time zone UT 0.20 TMY - NREL: nt VC0 04/12/15 09h	Country Country Longitude -8 Altitude TMY3 hourly DB (199 34	United Stat 119.0°W 149 m 91-2005)	les	
Project : Geographical Site Situation Time defined as Meteo data: Simulation variant : Simulation parameters Tracking plane, tilted A Rotation Limitations Backtracking strategy Inactive band Models used	Ampt 1 MV Bakersfield Mean Bakersfield Mean Ampt 1 MV Sim Axis M Track	Vac Projec dows Field Latitude Legal Time Albedo dows Field Vac - Varia ulation date Axis Tilt inimum Phi	t 35.4°N Time zone UT 0.20 TMY - NREL: nt VC0 04/12/15 09h	Country Longitude -8 Altitude TMY3 hourly DB (199 34	United Stat 119.0°W 149 m 91-2005)	les	
Geographical Site Situation Time defined as Meteo data: Simulation variant : Simulation parameters Tracking plane, tilted A Rotation Limitations Backtracking strategy Inactive band Models used	Bakersfield Mean Bakersfield Mean Ampt 1 MV Sim Axis M Track	dows Field Latitude Legal Time Albedo dows Field Vac - Varia ulation date Axis Tilt inimum Phi	35.4°N Time zone UT 0.20 TMY - NREL: nt VC0 04/12/15 09h	Country Longitude -8 Altitude TMY3 hourly DB (19) 34	United Stat 119.0°W 149 m 91-2005)	les	
Situation Time defined as Meteo data: Simulation variant : Simulation parameters Tracking plane, tilted A Rotation Limitations Backtracking strategy Inactive band Models used	Bakersfield Mean Ampt 1 MV Sim Axis M Track	Latitude Legal Time Albedo dows Field Vac - Varia ulation date Axis Tilt inimum Phi	35.4°N Time zone UT 0.20 TMY - NREL: nt VC0 04/12/15 09h	Longitude -8 Altitude TMY3 hourly DB (19) 34	119.0°W 149 m 91-2005)		
Meteo data: Simulation variant : Simulation parameters Tracking plane, tilted A Rotation Limitations Backtracking strategy Inactive band Models used	Bakersfield Mean Ampt 1 MV Sim Axis M Track	dows Field Vac - Varia ulation date Axis Tilt inimum Phi	TMY - NREL: nt VC0 04/12/15 09h	TMY3 hourly DB (19)	91-2005)		
Simulation variant : Simulation parameters Tracking plane, tilted / Rotation Limitations Backtracking strategy Inactive band Models used	Ampt 1 MV Sim Axis M	Vac - Varia ulation date Axis Tilt inimum Phi	nt VC0 04/12/15 09h	34 Avic Animuth			
Simulation parameters Tracking plane, tilted A Rotation Limitations Backtracking strategy Inactive band Models used	Sim Axis M Track	Axis Tilt	04/12/15 09h	34			
Simulation parameters Tracking plane, tilted J Rotation Limitations Backtracking strategy Inactive band Models used	i Axis M Traci	Axis Tilt inimum Phi	0° -45°	Avie Azimuth			
Tracking plane, tilted J Rotation Limitations Backtracking strategy Inactive band Models used	Axis M Track	Axis Tilt inimum Phi	0° -45°	Avie Azimuth			
Backtracking strategy Inactive band Models used	Track		10	Maximum Phi	0° 45°		
Models used		er Spacing	6 m	Collector width	1.97 m		The combined number of
Models used		Left	0 m	Right	0 m		modules on inputs A and B
	Tr	ansposition	Perez	Diffuse	Imported		for a single optimizer
Horizon	F	ree Horizon					
Near Shadings	Detailed electrical	calculations	(acc. to modu	le layout)	[The unit nominal power is the maximum rated output
PV Array Characteristi PV module Custom parameters definition	cs Si-poly M	Model anufacturer	Typical 310V MFG	Vp p-Si Module			power of a single optimizer
AMPT String Optimize		Model	V1000-12	Unit nom. power	11400 W		Calculated as Imp per
PV modules on one Opt No. of Optimizers Total number of PV mod Array global power Array operating characte Total area	imizer ules N Nor ristics (50°C)	in series In series b. modules ninal (STC) U mpp Iodule area	44 1 4180 1296 kWp 1414 V 8021 m ²	in parallel In parallel Unit Nom. Power At operating cond. I mpp Cell area	1 95 strings 310 Wp 1156 kWp (818 A 7325 m ²	50°C)	(has no physical meaning)
terre at a		Madel			0.000000		Umpp is calculated as the
Characteristics	M	anufacturer	Inv MFG	Linit Nem Dewer	1000 6000		sum of Vmp of all modules
Inverter pack	Nb	of inverters	1 units	Total Power	1000 kWac		physical meaning as the
intenet part			1 01110		10000 11100		inputs are not in series.
PV Array loss factors					01-000-1-00-00-00-0	20.000	
Thermal Loss factor		Uc (const)	20.0 W/m ² K	Uv (wind)	0.0 W/m²K	/ m/s	
Wiring Ohmic Loss	Glob	al array res.	11 mOhm	Loss Fraction	1.5 % at ST	c	
Module Quality Loss Module Mismatch Losse	s			Loss Fraction	-0.4 % 1.0 % at MF	PP	

5.2 Loss Diagram differences

5.2.1 Inverter Loss over nominal inv. voltage

The Loss Diagram below is from a unique project to illustrate this concept.

It is uncommon for the *Inverter Loss over nominal inv. voltage* to be a value other than 0.0%. If it is not equal to 0.0%, then verify that the inverter maximum operating voltage is greater than or equal to the optimizer's maximum absolute voltage as described in section 3.3.1. To understand why this condition is important, see the Appendix.

5.2.2 Optimizer overloaded loss

The Loss Diagram below is from a unique project to illustrate this concept.

An *Optimizer overload loss* that is not 0.0% indicates that the output power of the optimizer has been exceeded under certain operating conditions. In other words, the optimizer is clipping power before the inverter which does not follow Ampt's recommended design practices. If the *Optimizer overload loss* is not 0.0%, verify that the string sizing and choice of optimizer are in accordance with Ampt's design guidelines. Also, make sure the input parameters for PVsyst are entered correctly.

Appendix

PVsyst's inverter max operating voltage behavior

When running a simulation in PVsyst with Ampt String Optimizers, it is important for the inverter maximum operating voltage to be greater than or equal to the optimizer's maximum absolute voltage as described in section 3.3.1 so that artificial losses are not introduced in the Loss Diagram report.

To explain why this is, first consider the following representative P/V curves for two different inverters. Some inverters deliver full power up to a fixed voltage (a), while others have a linear derate as a function of voltage (b).

Ampt's design guidelines accommodate both inverter behaviors to ensure that the P/V curve of the Ampt array fits within (or "to the left of") the inverter's maximum operating range.

voltage derate to limit full power

However, PVsyst models inverters with a linear voltage derate as an inverter with a fixed voltage limit. This introduces artificial losses to the PV system simulation at times when Ampt systems are operating outside PVsyst's recognized maximum.

To work around this, Ampt recommends having the inverter manufacturer change the OND file so that the inverter's maximum operating voltage is 5 volts higher than the maximum operating voltage for your Ampt optimizer model (H') to ensure that the losses reported by PVsyst are real.

Change OND file to ensure that the losses reported by PVsyst are real

Please contact Ampt with any questions you may have.